

Google LLC
25 Massachusetts Ave., NW
Washington, DC 20001

January 12, 2026

The Honorable Elizabeth Warren
309 Hart Senate Office Building
Washington, DC 20510

The Honorable Chris Van Hollen
730 Hart Senate Office Building
Washington, DC 20510

The Honorable Richard Blumenthal
503 Hart Senate Office Building
Washington, DC 20510

Dear Senators Warren, Van Hollen, and Blumenthal:

Thank you for your letter dated December 15, 2025. We welcome the opportunity to share information about Google's responsible growth policy and our efforts to pioneer new, cost-effective ways to secure clean energy and improve grid reliability.

We recognize that, across the United States, households and businesses are facing affordability pressures stemming from aging grid infrastructure, inflation, extreme weather, and policy and market shifts. At the same time, electricity demand is rising for the first time in decades, with growth expected through 2040 across multiple sectors.

Realizing the potential of artificial intelligence (AI) will require robust energy infrastructure, more efficient energy use, and new, innovative technology solutions. As discussed in more detail below, Google is approaching this challenge from multiple angles — investing in new infrastructure, engineering more resilient grids, and scaling sources of clean energy. We believe it is important to take a dynamic rather than a static approach to this country's energy picture, and we are optimistic that scientific breakthroughs powered by AI applied to energy generation, transmission, and materials science may help pave the way for a more abundant energy environment for all Americans. Google is helping address current challenges by paying for provision of our peak electrical demands and for 100 percent of the electricity we use to power our data centers while investing in new energy sources to help lower costs for others. Advance planning helps ensure that our operations keep electricity affordable and reliable for the communities in which we operate and that Google, not local residents, pays for any new grid infrastructure required for our growth.

Please find below more information about our data centers as well as our overall approach to—and investments in—energy innovation.

Our Data Centers: Prioritizing Affordable and Reliable Energy

Our [data centers](#) are located in North America, South America, Europe, and Asia. They power the digital services billions of people rely on every day, including Google Cloud, Search, Gmail, Maps, and Gemini. The primary uses of specific data centers, and whether they are used for AI processing or other purposes, change over time.

As large, stable electricity users, data centers' consistent demand can help drive down the unit cost of electricity for all ratepayers, amortizing investments in the fixed costs of energy generation and distribution across a wider base. [Research](#) out of Lawrence Berkeley National Lab found that since 2019, states with higher load growth, such as North Dakota and Virginia, saw a decrease in average retail electricity prices, demonstrating that spreading the fixed costs of the grid across a wider base of users can lower prices. At Google, we believe that investing in data centers not only powers AI, but, done thoughtfully, can be a critical part of the solution to energy affordability.

Google's data centers are among the most efficient in the world, delivering [over six times](#) more computing power per unit of electricity than they did just five years ago. Our priority is to help responsibly scale grid systems to be more reliable, resilient and affordable for everyone. This can only be done through close partnership with our peers, utility partners, grid operators, and policymakers. Examples of our efforts include applying [AI to accelerate grid interconnection](#), developing [demand response capabilities](#), pioneering innovative [utility rate structures](#) to accelerate the deployment of advanced energy technologies and paying for the premium cost of these technologies, identifying high-impact [transmission lines to deploy advanced conductors](#) and supporting [local energy affordability programs](#) in places like [Arkansas](#), [Georgia](#), [Nebraska](#), [Ohio](#), [Oklahoma](#), [South Carolina](#), and [Texas](#), among others.

Critical Power Infrastructure: Modernization, Resiliency, and Cost Efficiency Efforts

At Google, we are committed to paying for all the electricity we use and contributing to other costs associated with growth. We work closely with our utility partners, grid operators, and utility regulators to ensure we cover the costs of new infrastructure directly attributable to our growth, protecting communities and ratepayers from bearing the burden. We believe these actions ensure Google pays its fair share for infrastructure built specifically to serve our operations.

Some Google data centers purchase electric services pursuant to publicly available large load tariffs that are filed with, and approved by, state public utility commissions. These tariffs are subject to public review and comment, and set forth standard terms of service for large load customers. Other data centers require more bespoke arrangements with the relevant utility. In these cases, Google negotiates arms-length agreements with utilities, typically under the utilities' standard contracts, and in accordance with applicable regulations. Aside from information disclosed in public filings, the terms of our energy supply agreements with local utility providers are for the most part confidential; in particular, our pricing terms are held confidentially to protect competition but are subject to regulatory review. The parties' confidentiality obligations are subject to carve-outs for legally required disclosures, which can trigger notice requirements to counterparties.

The [Capacity Commitment Framework \(CCF\)](#) is a new contract model that Google designed to offer a common-sense solution for new large energy customers to responsibly buy electricity without burdening others with the costs of building infrastructure for new projects. Under the CCF, large energy customers such as Google sign binding contracts upfront that assures they will stick to their commitment. This reduces the risk for utilities, giving them the confidence to immediately fund and build the infrastructure for more power sources and grid upgrades. This approach is designed to shield American families from having to bear the costs of large energy customers and to ensure they benefit from a more affordable and reliable grid. It also unlocks growth for major industries, creating jobs and supporting American economic competitiveness, and it allows utilities to build with the confidence they urgently need. As of November 2025, the CCF has been adopted by several utilities across the United States.

We have also collaborated with partners across the U.S. to create a new utility rate structure called the [Clean Transition Tariff \(CTT\)](#) that allows utilities to meet customer demand with around-the-clock clean energy with no increase in costs for non-participating customers. First approved in Nevada and replicable elsewhere, the CTT is a scalable model that requires CTT customers to pay for both the new energy resources they select and the standard utility services, completely protecting other ratepayers. There are complex tradeoffs when large energy consumers seek to leverage new clean energy sources for their demand, and the CTT structure ensures that customers who are focused on the lowest cost are shielded from the mix of power sources chosen by large power consumers.

Energy Consumption

Google's energy consumption is informed by business demands across our various products and services and is the result of a complex and comprehensive planning process. Google calculates the maximum amount of electricity its data centers will need at every stage—from those still being planned to those already running. Our calculations take into account historical and forecasted utilization data and power usage effectiveness to help planners size utility equipment and manage land use for future data center growth; the capacity of the power infrastructure completed at each site; contracted power generation; and forecasts for peak demand usage at each data center site. Google shares detailed forward-looking forecasts with our utility partners to ensure planning processes appropriately account for our anticipated growth.

Delivering Flexibility to Strengthen Grids

To ensure reliability, Google prioritizes grid-connected service. In cases where energy resources and data centers share a location, we advocate for 'front-of-the-meter' co-development, in tandem with grid operators and developers. Such co-location must complement, rather than replace, the broader grid infrastructure investment required for future load growth.

Demand response is an important piece of this portfolio, as it can be deployed quickly to help bridge the gap between short-term load growth and long-term energy solutions, delivering immediate benefits. Much of the cost of grid infrastructure for American homes derives from the need to provision for peak load. In an effort to operate our data centers efficiently, Google has made strides in increasing operational flexibility. Our data centers are designed to work with the utility to be the first to 'power down' in these times to ensure that expensive peak provisioning is lower, in turn reducing the fixed costs of the grid for American families. By shifting certain tasks to a later point in time or from one data center to another, Google can temporarily reduce energy consumption at a location where flexibility is needed to ensure grid reliability for other consumers. Demand response can enable large electricity loads like data centers to be interconnected more quickly, reduces the need to build new transmission and power plants, and helps grid operators more effectively and efficiently manage power grids, lower overall system costs, and improve reliability. Google has also joined the DCFlex initiative, coordinated by the Electric Power Research Institute, to explore how data centers can support the electric grid, enable better asset utilization, and support the clean energy transition.

As AI adoption accelerates, we see a significant opportunity to expand our demand response toolkit, develop capabilities specifically for machine learning workloads, and leverage these capabilities to manage large new energy loads. By including load flexibility in our overall energy plan, we can manage AI-driven growth even where power generation and transmission are constrained. We believe this is a promising tool for managing large new energy loads and facilitating investment and growth.

Site Information and Considerations for Data Center Design and Technology

We work to ensure that there is no impact to the water table or residential water rates related to our data centers. Existing water systems and resources, as well as regional water availability trends, are therefore important factors we consider when selecting sites for our data centers. In areas facing significant water scarcity, we employ alternative cooling technologies such as air cooling and utilize non-potable water sources, including recycled wastewater or seawater. For instance, our Douglas County, Georgia, data center employs reclaimed wastewater for its cooling needs. Google funded the development of an adjacent treatment facility that processes approximately 30 percent of the wastewater from the Douglasville-Douglas County Water and Sewer Authority for reuse in our operations. We have decreased our water-use intensity by implementing a recirculation system within our data centers. This allows us to cool our systems multiple times using the same water, maximizing the efficiency of each drop. Compared to once-through cooling methods, this practice achieves water savings of up to 50 percent. By employing air-cooled technology, Google's data centers in Mesa, Arizona, Storey County, Nevada, and Dublin, Ireland, entirely eliminate the need for water in our cooling systems. Across Google data center campuses and offices, we have committed to replenishing 120 percent on average of the water consumed.

Local governments offer a variety of programs meant to incentivize investment, which serve to reduce real estate and personal property taxes for a set period of time. These abatements are generally negotiated between local governments and the developer during the permitting and planning process of a large industrial project.

Additional Information on Google's Approach to Energy Innovation

Realizing the potential of AI will require robust energy infrastructure, more efficient energy use, and new, innovative technology solutions. Google is approaching this challenge from multiple angles — investing in new infrastructure, engineering smarter and more resilient grids, and scaling both mature and next-generation sources of clean energy. At the same time, we are focused on maximizing efficiency at every layer of our operations — from the construction and operation of our buildings to the design of our custom-built hardware and the software and models that run in our data centers.

In order to improve the energy efficiency of AI, a clear and comprehensive understanding of AI's environmental footprint is important. To date, comprehensive data on the energy and environmental impact of AI inference has been limited. Last August, Google announced we are helping to close this gap by releasing a comprehensive methodology for measuring the energy, water, and carbon emissions of its AI models, detailed in a [technical report](#). Using this methodology, we estimated that over a 12-month period, while delivering higher-quality responses, the median energy consumption and carbon footprint per Gemini Apps text prompt decreased by factors of 33x and 44x, respectively. Based on our recent analysis, we found that our work on efficiency is proving effective and that the energy consumed per median prompt is equivalent to watching television for less than nine seconds. These advancements build upon our long-standing commitment to data center efficiency. In 2024, for example, we reduced our data center energy emissions by 12 percent, even as electricity consumption grew by 27 percent year-over-year, driven by the expansion of our business and services. Meanwhile, we are proud that our fleet continues to set the industry benchmark for [efficiency](#); we currently report a trailing twelve-month Power Usage Effectiveness (PUE) of 1.09 across all large-scale sites—meaning our data centers use about 84% less overhead energy than the industry average.

Investing in New Technologies

As part of our efforts to optimize energy use as we grow, Google is advancing a broad portfolio of new energy technologies, including those described below, that can support our growth and enable a reliable, affordable, clean energy future.

- **Geothermal Power:** The U.S. Department of Energy has found that geothermal energy could provide up to 120 gigawatts of reliable, flexible generation capacity in the U.S. by 2050 and generate over 16 percent of the U.S.' anticipated electricity needs. Several years ago, we [partnered](#) with clean-energy startup Fervo on the world's first corporate agreement to develop an enhanced geothermal power project. Today, our geothermal project is operational and carbon-free electricity has started flowing onto the local grid that serves our data centers in Nevada.
- **Long Duration Energy Storage (LDES):** Lithium-ion batteries, which typically store and dispatch power for 4 hours or less, have been critical for adding electricity capacity to grids and managing short-term fluctuations in renewable generation. [Studies](#) by the Electric Power Research Institute,

however, show that long duration energy storage (LDES) technologies can cost-effectively integrate a growing volume of renewables onto power systems and contribute to more flexible, reliable grids. Through Google's long-term partnership with [Energy Dome](#), we plan to support multiple commercial projects to deploy their LDES technology. In addition, we plan to support a growing range of other LDES technologies under development through both commercial agreements that can catalyze wider market adoption of more mature technologies. More information about how the Energy Dome technology works is available [online](#).

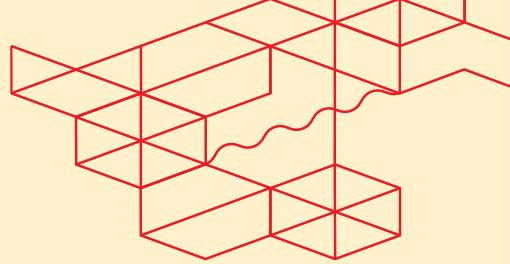
- **Nuclear Clean Energy Agreement:** In 2024, we signed the world's first corporate agreement to purchase nuclear energy from multiple small modular reactors (SMRs) to be developed by [Kairos Power](#). Kairos Power's technology uses a molten-salt cooling system, combined with a ceramic, pebble-type fuel, to efficiently transport heat to a steam turbine to generate power. This passively safe system allows the reactor to operate at low pressure, enabling a simpler more affordable nuclear reactor design. The initial phase of work is intended to bring Kairos Power's first SMR online quickly and safely by 2030 in Tennessee, followed by additional reactor deployments through 2035. Overall, this deal will enable up to 500 megawatts of new 24/7 carbon-free power to the U.S. Building on this work to advance nuclear solutions, we recently [announced](#) a collaboration with NextEra Energy to accelerate nuclear deployment across the U.S., including through the restart of the Duane Arnold Energy Center in Iowa.
- **Carbon Capture and Storage (CCS):** One critical source of clean firm power we identified in our [strategy](#) is natural gas with carbon capture and storage (CCS). CCS works by capturing carbon dioxide from a power plant or industrial facility and permanently storing it deep underground. Leading global institutions like The International Energy Agency (IEA) and Intergovernmental Panel on Climate Change (IPCC) agree that it is a valuable tool, because it can significantly reduce emissions from power generation and carbon-intensive industries like steel manufacturing and cement production.
 - Last year, we [announced](#) a first-of-its kind corporate agreement to support a gas power plant with CCS. Broadwing Energy, located in Decatur, Illinois, will capture and permanently store approximately 90 percent of its carbon dioxide emissions. By agreeing to buy most of the power we generate, Google is helping get this new, baseload power source built and connected to the regional grid that supports our data centers.

* * *

While data centers contribute to overall energy demand, when structured responsibly, their steady, predictable demand can help spread system fixed costs and support new infrastructure investment, benefiting all grid users. Collaboration among utilities, regulators, legislators, hyperscalers, non-governmental organizations, consumer advocates, and other relevant stakeholders will be essential to

ensuring the grid can meet future demand without overburdening customers. We are committed to participating in, and leading, these critical efforts.

Thank you for the opportunity to respond to your inquiry. Google is helping foster a new era of technological progress, and we are committed to expanding access to affordable, reliable, and clean energy in the communities we call home.


Sincerely,

A handwritten signature in black ink that reads "Anne E. Wall".

Anne Wall
Head of U.S. Federal Government Affairs & Public Policy

Arquelle Shaw
President, Equinix Americas

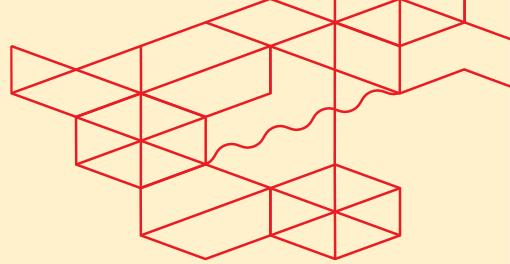
January 12, 2026

The Honorable Elizabeth Warren
United States Senate
311 Hart Senate Office Building
Washington, DC 20510

The Honorable Chris Van Hollen
United States Senate
730 Hart Senate Office Building
Washington, DC 20510

The Honorable Richard Blumenthal
United States Senate
503 Hart Senate Office Building
Washington, DC 20510

Dear Senators Warren, Van Hollen, & Blumenthal:


Thank you for your recent letter regarding the ability of the U.S. electricity grid to meet increasing demand, the implications for electricity costs for all ratepayers, and the equitable allocation of those costs among applicable rate classes. We recognize and appreciate the concerns being raised and agree that increasing demand places meaningful pressure on the grid. The growing digital economy contributes to this increased demand, though this represents just one of a wide range of factors impacting utility prices.

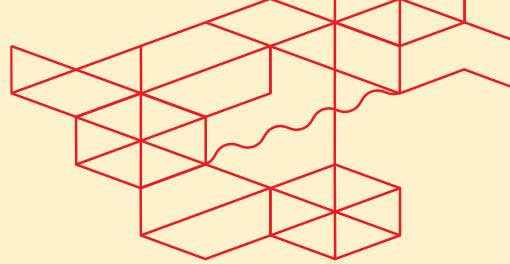
We share your commitment to ensuring the grid can meet the demands of a thriving digital economy without burdening American ratepayers. These are topics we take very seriously as Equinix invests to build critical digital infrastructure across the country. We greatly appreciate the opportunity to share our perspective on this national priority.

Equinix has a long history of working with utilities, communities, and policymakers to align our data center investments with the public interest. We believe the industry can and must support energy affordability, availability, and reliability while also meeting the national and economic security imperatives of maintaining U.S. technology leadership. At Equinix, we are deeply committed to paying our fair share of the costs of the energy systems that support the communities where we operate. As our CEO, Adaire Fox-Martin, recently said in a press interview, “It’s important that large energy users, like data centers, pay a premium for what they’re utilizing so that we don’t impact small ratepayers, small energy users.”¹

¹ Brady & Goldman, “What the CEO of the World’s Largest Data Center Company—with 273 Locations In 36 Countries—Predicts Will Drive the Business Forward” (Fortune, Nov. 29, 2025), available at <https://fortune.com/article/equinix-adaire-fox-martin-data-center-boom/>

Arquelle Shaw
President, Equinix Americas

About Equinix


Equinix is the world's digital infrastructure company and one of the largest data center operators in the world with more than 270 data centers in 77 metro areas globally. With upwards of 95% of internet traffic crossing our platform, it is likely that the average American has used Equinix several times today.

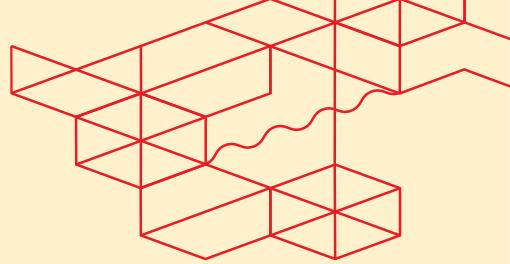
Equinix was established in 1998, and our first data centers were foundational to helping the early internet scale. We have since played pivotal roles in the digital transformation of enterprises and governments, enabled work from home during the Covid-19 pandemic, provided the digital infrastructure that underpins the most critical financial ecosystems globally, and are now helping the nation maintain leadership in AI.

We have built our reputation over nearly 30 years as both a key partner in our customers' success and as an integral part of the communities in which we operate. Equinix does not build speculatively – our history is one of decades of steady and continuous growth, and our long-term strategy is predicated on operating new data centers for decades to come. Our more than 10,000 customers include federal, state, and local public sector entities, financial markets, banks, hospitals, 911 call centers, nonprofits, higher education institutions, and more than 90% of the Fortune 100.

Equinix operates two types of data centers, colocation and “xScale”:

- A colocation data center is a facility where businesses and other organizations can rent space for servers and other computing hardware. Instead of maintaining their own data centers, enterprises can house their IT infrastructure in a shared, secure facility that provides physical space, power supply and backup power, cooling systems, network connectivity, physical security and technical support. Colocation data centers also facilitate interconnection (direct one-to-one connection via fiber optic cables between customers), which provides for high speed and private data transfer from one company or enterprise to another. Interconnection also facilitates hybrid multi-cloud deployments and is utilized by our enterprise customers to connect to the more than 3,000 cloud and IT service providers and more than 2,000 network service providers within our facilities. Equinix has an industry leading 499,000 discrete interconnections across our platform. Densely interconnected colocation data centers, such as the typical Equinix data center, create robust IT ecosystems, which facilitate further innovation for workloads that require lower latency and faster, more voluminous data transfer. This is of critical importance to AI inference. While sizes vary, our operational colocation data centers in the U.S. average about

Arquelle Shaw
President, Equinix Americas

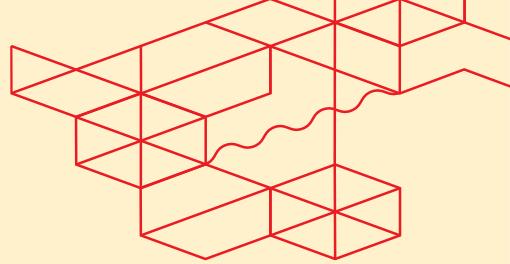

10MW in capacity with none larger than 35MW. Colocation data centers represent the vast majority of Equinix's fleet, consisting of more than 250 of our 270+ data centers globally.

- xScale is Equinix's joint venture hyperscale solution. These data centers tend to be larger facilities (in terms of both square footage and power draw) than our colocation datacenters. Equinix may have hundreds of customers in a single colocation facility with thousands of interconnections between them. In contrast, an xScale facility may only have one or a handful of customers leasing tens or potentially even hundreds of megawatts of capacity. Cloud service providers represent the typical xScale customer. While Equinix's colocation facilities are ideal for AI inference, an xScale facility can be particularly well suited for AI model training. Given the important role these types of data centers play in driving cutting-edge innovation and enabling U.S. technology leadership, we have plans to expand our xScale operations here — with one campus under construction and another in pre-construction development in the U.S.. We have signed long-term “take-or-pay” agreements (i.e., assuring that we will pay for services even if the projects, for whatever reason, do not materialize or don't fully utilize the agreed to services) with the relevant utilities for both projects and the campuses will operate under large load rate classes, reflecting our continued focus on protecting consumer rate payers from potential cost shifting.

Equinix has long striven to be an industry leader in energy procurement and efficiency and has taken novel approaches to renewable energy procurement (96% coverage globally), onsite power generation with fuel cells, and collaborations with micro and small reactor providers. Our company works relentlessly to improve the energy efficiency of our data centers, which we believe is both a business and a community imperative. The data center industry utilizes “power usage effectiveness” (“PUE”) as a measure of a facility’s power efficiency. PUE is a representation of how much power is used by IT equipment, such as servers relative to power used by building operations including cooling. A PUE of 1.0 is considered perfect. The Uptime Institute found that the industry average PUE in 2024 was 1.56.² Equinix’s current fleetwide average PUE is 1.39, representing significantly greater efficiency than the industry average and continuous improvement from our 2019 baseline of 1.54. Equinix has achieved this consistent improvement through novel approaches such as becoming the first colocation provider to adopt ASHRAE A1A standards that enable us to increase the baseline ambient temperatures in our data centers, thereby lowering electricity consumption through a reduced need for cooling.

² Donnellan et al, “Uptime Institute Global Data Center Survey Results 2024” (Uptime Institute, July 2024), available at <https://uptimeinstitute.com/resources/research-and-reports/uptime-institute-global-data-center-survey-results-2024>

Arquelle Shaw
President, Equinix Americas


Questions

We recognize Congress's important oversight role and the need for transparency around data center energy use and grid impacts. While certain customer-specific and site-level information is protected by contractual confidentiality obligations and commercial sensitivity, we are able to provide aggregated, anonymized, and system-level information that reflects our operations and their impacts. Where helpful, we are also happy to engage in confidential briefings with your staff to provide additional context and information consistent with these obligations.

Regarding data center electricity consumption:

As discussed earlier, Equinix is primarily a colocation data center operator. These types of data centers tend to be much smaller than a typical “hyperscale” facility. The average capacity of our operational colocation facilities in the U.S. today is approximately 10MW with none larger than 35MW. We have one colocation data center in Massachusetts. We do not currently operate data centers in Maryland or Connecticut. Our colocation data centers in the U.S. support an incredibly diverse array of customer workloads from enabling cloud services to financial transactions, hospital systems, 911 call centers, medical research, and a variety of public sector use cases. AI deployments are increasing in our facilities, though they represent a fraction of customer deployments today and no Equinix data center in operation today solely hosts AI deployments. While our colocation data centers do host AI model training deployments, they are often best suited for AI inference workloads. AI inference tends to be less power intensive than AI model training and instead benefits from the physical proximity to end users, ample network connectivity, and densely interconnected ecosystems typical of an Equinix colocation data center. We believe the market for AI inference will be twice that of AI model training by the end of the decade and this belief informs our site selection for future growth.

Our colocation facilities in the U.S. have “N+1” redundancy – which means there are back up generation assets on site to match at least 100% of their designed grid draw. Regarding demand response, Equinix is supportive of policies which expand opportunities for a wider range of capabilities to participate in voluntary demand response style programs, including use of on-site back up generation, but also extending to other technologies such as potential future battery storage deployments, behind and in front of meter. Our existing on-site backup generation assets could be utilized during periods of extreme grid stress, also known as energy emergency alerts (EEAs), to reduce our grid draw and thereby reduce the likelihood of black outs or significant load shedding events for other customers. However, we caution against programs or policies which would result in the regular or otherwise significantly increased utilization of backup generation for grid events. Backup generators have emissions and noise considerations that need to be accounted for, and onsite backup generation is not designed to run for extended periods of time. We are also exploring novel arrangements with

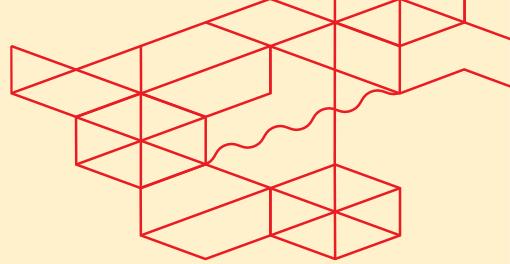
Arquelle Shaw
President, Equinix Americas

distributed battery systems and are working with our utility partners to overcome technical and commercial barriers to this type of capacity. This type of solution could further provide demand response capabilities for our facilities and the communities in which we operate.

Beyond traditional backup generation assets, Equinix is a leader in the deployment of onsite fuel cells with more than 75MW operational at 19 data centers in 6 states, and with 30MW of additional fuel cell capacity under development.³ This technology has the ability to provide on-site power, and data center operators can bring this type of generation to their facilities to support local grid capacity needs. Looking to the future, Equinix has made industry leading commitments with advanced nuclear providers including Oklo and Radian⁴ in the U.S. and with others globally.

Regarding consumer utility costs:

We share your concerns about increased consumer utility costs. While this is occurring at the same time as AI-driven demand spurs unprecedented data center construction across the country, we believe it's important to acknowledge that this is a much broader issue. Recent studies indicate that the causes of increased consumer utility costs are complex and driven by a multitude of factors. For example, the World Resources Institute ("WRI") recently observed:


*"Electricity prices in the U.S. have never been driven by one single factor. They reflect a complex web of economic, policy and environmental forces. While it's tempting to look for easy answers and scapegoats, the reality is rarely that straightforward."*⁵

WRI identified four factors responsible for electricity price increases: 1) increasing demand relative to available supply, for which data centers and other new demand, like reshoring manufacturing and electrification of the transportation sector play a role, as does extreme weather; 2) the growing need to replace a large proportion of the grid's aging electrical equipment at the end of its planned life at the same time that supply chain costs and constraints have increased; 3) damage from severe weather and wildfires, and the need to reinforce the energy system from further harm; and 4) volatility in natural gas prices at a time that our energy supply is growing increasingly dependent on natural gas. WRI concludes that "[a]s the U.S. electricity system faces unprecedented challenges," it is important that policymakers, regulators, and advocates seek equitable and meaningful solutions. At Equinix, we believe that the U.S. power system needs more supply (which we define as both

³ "Bloom Energy Expands Data Center Power Agreement with Equinix Surpassing 100MW" (Feb. 20, 2025), available at <https://www.bloomenergy.com/news/bloom-energy-expands-data-center-power-agreement-with-equinix-surpassing-100mw/>

⁴ "Equinix Collaborates with Leading Alternative Energy Providers to Power AI-Ready Data Center Growth" (Aug. 14, 2025), available at <https://investor.equinix.com/news-events/press-releases/detail/1079/equinix-collaborates-with-leading-alternative-energy>

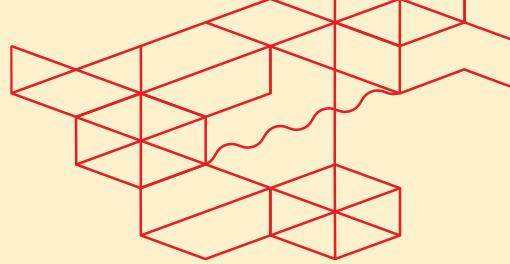
⁵ Levinson & Goldsmith, "What's Really Driving Up US Electricity Prices? We Unpack the Numbers" (WRI Dec. 15, 2025), available at <https://www.wri.org/insights/whats-driving-us-electricity-prices>

Arquelle Shaw
President, Equinix Americas

generation and transmission). We will continue to pay our fair share for new transmission and generation capacity, and we look forward to working with you, regional system operators, and state regulators on policy solutions that can help enable needed investment in our nation’s grid.

WRI’s analyses derive in part from a study by Lawrence Livermore Berkeley Labs (LBNL)⁶, which found that new large energy customers, like data centers, may *reduce* all customers’ electricity costs as new customers contribute to more efficient use of the grid and help spread its costs. Similarly, a more recent study by the economics firm E3 found that data centers can provide substantial net economic benefits, particularly when they “drive crucial investments in grid infrastructure beyond their own needs.”⁷ A 2024 study by Virginia’s Joint Legislative Audit and Review Commission⁸ reached similar conclusions. These findings align with WRI’s and LBNL’s conclusions: an aging grid under increasing stress and facing growing demand needs investment, and new large loads can reduce the burden of that investment for existing customers.

States and regions that work to bring on new supply and serve growing demand could see reduced rates as that new demand absorbs an increasing share of the system’s fixed costs. As former Secretary of Energy Jennifer Granholm recently wrote, “*Done right, data centers can share in grid costs and actually help lower rates for everyone. Studies show that for every gigawatt of new large-load demand added to the grid, customer rates could fall by 1 percent to 2 percent – and when paired with utility incentives for GETs [Grid Enhancing Technologies], the payoff is clear: more data centers, lower rates, and faster economic growth.*”⁹ Equinix is working closely with our utility partners, technology providers, and communities to deliver energy system upgrades that provide broader benefits, rather than increased costs, for all grid customers.


Many states are establishing new rate classes which can more accurately and fairly allocate costs to large load customers. Equinix is broadly supportive of these efforts and works closely with regulators, utility partners, and other stakeholders to establish structures which both enable continued demand growth and ensure that other ratepayers are not burdened with the costs of infrastructure upgrades undertaken to serve large loads. As we do not build speculatively and are committed to sustainable long-term growth, Equinix has worked closely with our utility partners to develop commercially sensible and well designed “take-or-pay”

⁶ Wiser et al, “Factors Influencing Recent Trends in Retail Electricity Prices in the United States” (LBNL Oct. 2025), available at https://eta-publications.lbl.gov/sites/default/files/2025-10/full_summary_retail_price_trends_drivers.pdf

⁷ Liu et al, “Tailored for Scale: Designing Electric Rates and Tariffs for Large Loads (E3 Dec. 2025), available at <https://www.ethree.com/wp-content/uploads/2025/12/RatepayerStudy.pdf>

⁸ JLARC, “Data Centers in Virginia” (Dec. 9, 2024), available at <https://jlarc.virginia.gov/pdfs/reports/Rpt598.pdf>

⁹ Ducey & Granholm, “Data Centers Can Drive Affordability | Opinion” (Newsweek Jan. 6, 2026), available at <https://www.newsweek.com/data-centers-can-drive-affordability-opinion-11315929>

Arquelle Shaw
President, Equinix Americas

style contracts where appropriate. These agreements can insulate other ratepayers from the financial risk of large grid investments. For example, Equinix recently reached a “take-or-pay” agreement with ComEd in Northern Illinois on a 10-year transmission services contract.

ComEd President and CEO Gil Quiniones said of the agreement, *“These new transmission security agreements are a model for how utilities and the developers of large load projects – regardless of industry sector – can come together to meet growing power requests responsibly...[as they]...ensure that the customers who impose very large demands on the system are paying their fair share.”*¹⁰ The significant financial scale of these long term contracts underscores our commitment to paying our full cost of service and to enabling system investments which can provide benefits to all customers.

Regarding planned expansions and future data centers:

When doing site selection for future data centers, Equinix prioritizes power availability, physical proximity to major metropolitan areas, proximity and density of major fiber lines, community engagement, local environmental factors, and customer demand. We begin working directly with communities where we intend to deploy prior to groundbreaking and remain engaged through the decades long expected service lives of our data centers. In 2024, Equinix employees volunteered for more than 37,000 hours with local community groups with more than 34% of our employee base participating in volunteer or giving activities. Our community engagement also includes working with local technical and community colleges to design data center specific curricula, offering scholarships, and hosting paid internships.

Conclusion

We look forward to working with your offices on policy solutions that ensure energy affordability, reliability, and availability while enabling the U.S. to maintain the economic and national security advantages that AI and digital leadership bring. We believe such policy solutions can deliver a better energy future for individuals, communities, enterprises, and the country. Thank you again for this opportunity to discuss Equinix, our operations, our role in digital transformation and the AI revolution, and energy affordability.

Sincerely,

Arquelle Shaw
President, Equinix Americas

¹⁰ [“ComEd Announces New Agreements Signed to Ensure Large Load Customers Pay their Fair Share to Connect with and Use the Grid | ComEd - An Exelon Company”](https://www.comed.com/news/news-releases/2026-1-6) (Jan. 6, 2026), available at <https://www.comed.com/news/news-releases/2026-1-6>

COREWEAVE, INC.
290 W Mount Pleasant Ave, Suite 4100
Livingston, NJ 07039

January 12, 2026

The Honorable Elizabeth Warren
United States Senate
Washington, DC 20510

The Honorable Chris Van Hollen
United States Senate
Washington, DC 20510

The Honorable Richard Blumenthal
United States Senate
Washington, DC 20510

Dear Senators Warren, Van Hollen, and Blumenthal:

Thank you for your December 15, 2025 letter regarding data center energy use. We share your commitment to ensuring that infrastructure development benefits American communities and that energy remains affordable for families. CoreWeave welcomes the opportunity to describe our approach to responsible growth.

Who We Are

CoreWeave is a specialized cloud infrastructure company purpose-built to support artificial intelligence workloads that enable advances across healthcare, scientific research, national security, and other sectors critical to American competitiveness. Demand for these applications increasingly depends on modern, efficient AI compute infrastructure. While we operate 41 data centers supported by approximately 590 MW of active power, our footprint reflects this demand and is intentionally designed around purpose-built architectures, rather than legacy infrastructure. We are not a hyperscale technology conglomerate.

Our business was founded on a simple principle: AI infrastructure should be designed for efficiency from day one, not retrofitted onto legacy systems. This shapes everything we do.

Our Commitment to Efficiency and Sustainability

CoreWeave's infrastructure incorporates advanced technologies that significantly reduce energy and water consumption compared to conventional data centers.

We deploy closed-loop liquid cooling systems that deliver superior thermal management while minimizing water use. Our partner facilities operate at power usage effectiveness levels well below industry averages—in some cases achieving PUE as low as 1.10.

Our modular approach to infrastructure deployments within our data centers and the fact that they are purpose-built for our specific use case drives unparalleled energy efficiency. Power and cooling technologies are thoughtfully engineered to minimize overhead, ensuring the vast majority of energy is directed to compute capacity (productive workloads) rather than support systems. This design philosophy enables scalable growth while maintaining operational efficiency.

In 2025, we strengthened our internal climate measurement practices to support credible, decision-useful reporting over time. We are establishing 2025 as our baseline year for greenhouse gas inventory and intend to set quantified emissions reduction targets aligned with California SB 253 and emerging international standards. We are members of the Clean Energy Buyers Association and the Responsible Business Alliance, collaborating with peers to accelerate clean energy adoption across our industry.

Our Commitment to Protecting Ratepayers

CoreWeave believes that the costs of serving our facilities should not be borne by residential customers and families. We structure our utility relationships to ensure we pay our fair share, and we support rate designs that allocate costs based on who causes them.

In 2024 existing United States data center capacity was estimated to be around 25 GW. CoreWeave represented about 1% of that capacity, the majority of which have utility energy service agreements with our data center operator.

Unlike historical industrial growth which can be attributed to a few physical sites and customers (e.g. steel mills, refineries, chemical processing) data centers are distributed. While headlines showcase announcements by the most recognized names, the industry is much more diverse. Distributed loads are best understood by the utilities who can aggregate and analyze anonymized customer data across their system. Utilities have experience in this kind of analysis on residential customers for example when constructing time-of-use rates. CoreWeave hopes a deeper understanding of load profiles and usage trends will allow system costs to be fairly allocated to large load customers and protect residential customers.

Achieving this alignment depends on how projects are planned from the outset. In practice, this begins well before a facility becomes operational. During site selection and development, CoreWeave works closely with utilities to plan power delivery as a gradual, phased ramp rather than a single large interconnection. We share detailed, staged load forecasts aligned with modular data center construction, enabling utilities to sequence distribution, substation, and transmission upgrades in step with actual demand.

Concretely, this means we provide long-term demand commitments that give utilities the certainty they need to plan and finance infrastructure without speculative risk. We deploy capacity in phases aligned with grid readiness, avoiding the boom-and-delay pattern that can leave ratepayers holding the bag for stranded investments. And we are developing demand response capabilities that can reduce strain on local grids during peak periods when electricity is most expensive for everyone. Together, these practices support more accurate infrastructure planning and help ensure that utility investments are appropriately matched to actual system needs, rather than being broadly socialized across residential customers.

We believe the concerns in your letter about cost-shifting to consumers are legitimate and important. CoreWeave is committed to being part of the solution. We support regulatory frameworks that hold large energy users accountable for their proportionate infrastructure costs, and we engage constructively in rate proceedings to advocate for fair, transparent cost allocation.

Our Pursuit of Clean and Renewable Energy

CoreWeave is not simply a consumer of grid power. We are actively working to bring new clean energy onto the grid.

We are in constant pursuit of renewable and non-emitting energy sources for our operations. Where we are not the facility owner, we work collaboratively with data center operators and energy suppliers to procure clean energy or clean energy attributes on our behalf. We source renewable energy through a combination of physically delivered clean energy from our facility owner's renewable supply and retired renewable energy certificates (RECs) to account for grid electricity generated from non-renewable sources. This approach ensures that for every megawatt-hour of electricity consumed, an equivalent renewable energy attribute is claimed through REC retirement. But we are pushing further. We are actively exploring power purchase agreements, behind-the-meter generation, and direct partnerships with clean energy developers that would add new renewable capacity to the grid—generation that benefits all ratepayers, not just our facilities.

Large, creditworthy customers like CoreWeave can play a critical role in financing the clean energy transition. Clean energy projects often struggle to secure financing without long-term offtake commitments. By signing long-term contracts for clean power, we can help de-risk investments in solar, wind, and other non-emitting generation that might not otherwise get built. This is additionality in practice: our demand helps bring new clean megawatts online that serve the broader grid.

We are also evaluating emerging non-emitting technologies, including next-generation storage, that could provide reliable, carbon-free power at scale. CoreWeave's goal is not merely to minimize our environmental footprint, but to be a catalyst for grid decarbonization.

Our Commitment to Communities

CoreWeave engages with local officials and community stakeholders early in the development process. We seek to be transparent about our plans and to understand community priorities. Beyond the direct jobs we create, our facilities create opportunities for local suppliers and service providers, and long-term data center investment has enabled local governments to support schools, emergency services, and infrastructure improvements without increasing residential tax burdens.

CoreWeave has created hundreds of jobs in the communities where our data centers operate, with many roles intentionally designed to be accessible to early-career workers and individuals from non-traditional backgrounds. We prioritize local and regional hiring wherever possible and work closely with workforce development organizations, technical schools, and local colleges to build pipelines of skilled talent.

We actively invest in training and upskilling local employees through hands-on technical training, certifications, apprenticeship programs and career development opportunities that support long-term advancement in infrastructure and technology roles. These positions offer competitive wages, comprehensive benefits, and pathways for growth, contributing to stable employment in the communities we serve.

In addition to direct employment, CoreWeave supports local economies by partnering with regional vendors and contractors and by engaging with community organizations focused on workforce development and critical needs such as food security. Our approach is designed to ensure that the communities hosting our facilities share in the economic and workforce benefits of our operations.

Responses to Your Questions

Your letter poses detailed questions across several categories. We offer the following summary responses:

Energy consumption and utility arrangements: CoreWeave's energy consumption and utility relationships are subject to standard regulatory oversight applicable to data center operators of our scale. Our planning and interconnection processes emphasize phased load growth and coordination with utilities to support reliability and cost alignment. Specific contract terms are subject to standard commercial confidentiality provisions. Our lobbying activities are disclosed pursuant to the Lobbying Disclosure Act of 1995.

Consumer costs: CoreWeave is committed to ensuring our energy use does not burden residential ratepayers. We structure our utility relationships around long-term commitments, phased deployments, and demand flexibility, all designed to reduce risk and cost for other customers. We support fair, cost-based rate design and engage constructively in regulatory proceedings to advocate for ratepayer protection.

Future development: Our site selection prioritizes access to clean and renewable energy, grid capacity, climate resilience, and community receptivity. We are actively pursuing opportunities to bring new clean generation online through long-term offtake agreements and partnerships with renewable energy developers. We participate in economic development programs established by state and local governments and comply with all associated requirements.

We would be pleased to arrange a briefing with your staff to discuss any of these topics in greater detail.

Conclusion

CoreWeave is committed to building AI infrastructure that strengthens American competitiveness, accelerates the clean energy transition, and protects the interests of ratepayers and communities. We believe responsible growth is not only the right thing to do; it is essential to the resilience of our energy system and to our long-term success.

Thank you for your attention to these important issues. We look forward to continued dialogue.

Sincerely,

Carl Holshouser
Vice President & Head of Global Government Affairs
CoreWeave

January 16, 2026

The Honorable Elizabeth Warren
U.S. Senate
311 Hart Senate Office Building
Washington, DC 20510

The Honorable Richard Blumenthal
U.S. Senate
503 Hart Senate Office Building
Washington, DC 20510

The Honorable Chris Van Hollen
U.S. Senate
730 Hart Senate Office Building
Washington, DC 20510

Dear Senators Warren, Blumenthal, and Van Hollen,

Thank you for your letter dated December 15, 2025, regarding data center development and electricity costs. We share your commitment to affordable, reliable energy for American families and welcome the opportunity to provide information about Amazon's data center investments and their impact on communities and the electric grid.

Amazon Is a Good Neighbor

When Amazon builds a data center, we invest in the community around it. Our data center investments create thousands of high-skilled jobs, generate hundreds of millions in tax revenue for local schools and services, and support workforce development programs that prepare residents for careers in the growing digital economy.

In just the past few years, we have made multi-billion-dollar investments in new data centers nationwide. These investments expand Americans' access to essential services—banking, healthcare, education, and small business operations—that power our economy. Our investments drive AI innovation, maintain America's competitive edge, and strengthen local economies. Many of these, like our announcement to invest an additional \$35 billion in Virginia, rank as the largest single corporate investment in their state's history.¹ In Pennsylvania, our \$20 billion investment – also the largest single investment in its history – supports an energy agreement that will keep an important carbon-free nuclear resource online for decades.² These kinds of benefits are similar in other states where we have made additional planned investment announcements such as \$26 billion in Indiana³, \$11 billion in Georgia⁴, \$13 billion in Mississippi⁵, and \$10 billion in North Carolina.⁶ In Ohio, we are investing an additional \$10 billion that will expand our total data center infrastructure investment to more than \$23 billion by 2030.⁷ These investments will support thousands of full-time equivalent jobs annually across the data center supply chain, including electricians, construction workers, and fiber-optic technicians.

In addition, these investments generate substantial tax revenue that directly funds public schools, emergency services, and local infrastructure. In Virginia, Amazon facilities contributed \$542.9 million in property taxes in 2024.⁸ In Oregon, where we have invested more than \$30 billion since 2012, resulting in \$9.1 billion in gross domestic product and supporting more than 7,400 jobs annually, we also paid \$54.2 million in property taxes in 2024 across Morrow and Umatilla counties.⁹ In Morrow County, Amazon tax payments and fees equal an

estimated 33% of the total county tax base.¹⁰ The investments we are making in new data centers across the U.S. will provide tax revenues to communities well into the future.

Beyond jobs and property taxes, Amazon invests directly in education and workforce development. We operate over 90 Think Big Spaces globally—specialized labs in local schools that provide students with hands-on experience in robotics, cloud computing, and environmental science. In Ohio, we have established 20 of these innovation labs, reaching tens of thousands of students.¹¹ We also partner with community colleges near our data centers—including Ivy Tech in Indiana, Holmes Community College in Mississippi, and Blue Mountain Community College in Oregon—to provide training in high-demand skills like fiber-optic installation and data center operations.¹² Our paid pre-apprenticeship programs create pathways to well-paying careers. In Virginia, 100% of our most recent pre-apprenticeship cohort was hired into our infrastructure business.¹³

Amazon Is a Net Contributor to America's Electricity System

When Amazon invests in data centers, we also invest in the grid. We pay the full cost of the electricity we use and make substantial investments in new generation and transmission infrastructure that benefit all ratepayers.

A December 2025 study by Energy and Environmental Economics (E3) examined Amazon data centers in California, Mississippi, Oregon, and Virginia. The study concluded that Amazon data centers "are not being subsidized by other customers" and "in some cases, have generated surplus utility revenues" that benefit all ratepayers by putting downward pressure on electricity rates.¹⁴ The study found that Amazon data centers create surplus utility revenues of approximately \$33,500 per megawatt annually—funds that utilities can use to modernize the grid and hold down rates for other customers.¹⁵

Amazon is committed to paying its full energy costs, and we have participated in utility rate proceedings in Indiana, Missouri, Ohio, Oregon, Pennsylvania, Virginia, and other states to ensure we pay the full cost of service. We have agreed to terms that protect other ratepayers, including minimum demand charges, financial guarantees, and long-term contract commitments of 10 years or more that provide utilities with revenue certainty to invest in grid modernization.¹⁶ In Indiana, regulators approved an agreement between Northern Indiana Public Service Company (NIPSCO) and Amazon that will deliver approximately \$1 billion in cost savings to NIPSCO customers over 15 years—roughly \$7 per month in credits on residential electric bills.¹⁷ In Mississippi, Entergy has launched a \$300 million grid transformation initiative that will increase reliability spending by 50% and target a 50% reduction in outages—at zero additional cost to residential customers—because data center revenues enable the improvements.¹⁸

We have also invested heavily in new energy generation. Since 2020, Amazon has been the world's largest corporate purchaser of renewable energy.¹⁹ Our portfolio of over 600 renewable energy projects across 28 countries includes more than 34 gigawatts of capacity. In Virginia alone, we have enabled more than 6 gigawatts of new generation. We are also pioneering the next generation of nuclear power. In Washington, we signed an agreement to develop advanced small modular reactors (SMRs) that can potentially scale up to 960 megawatts of capacity.²⁰ But we know that signing an agreement to fund a single project will not be enough to raise the money necessary to support the construction and early-stage development of SMRs. We have also made an equity investment in X-Energy—a leading U.S. company developing SMRs—to advance more than 5 gigawatts of new nuclear energy by 2039.

Data Centers Are the Infrastructure of the 21st Century

Data centers are foundational infrastructure for the modern economy, powering American leadership in artificial intelligence, enabling commerce and small business, and supporting critical national security operations.

The competition between the U.S. and China for AI leadership is, at its core, an infrastructure race—and data centers are the scorecard. Amazon is investing to ensure that race is won on American soil. Project Rainier, which we activated in late 2025, is one of the world's largest AI compute clusters, featuring nearly 500,000 custom AI chips with plans to scale to over one million.²¹ This infrastructure enables American companies and researchers to develop the AI systems that will shape the global economy for decades to come.

Data centers also power the everyday commerce that Americans rely on. Millions of small businesses use cloud services to reach customers, process payments, and manage operations. Emergency services depend on cloud infrastructure for 911 systems that can locate callers within meters rather than miles.²² Hospitals, schools, and local governments rely on data center infrastructure for critical operations.

Our data centers are essential to national defense. AWS serves over 11,000 government agencies across all classification levels, including the Central Intelligence Agency, Department of Defense, Department of Homeland Security, and broader intelligence community.²³ AWS GovCloud was the first cloud purpose-built for U.S. government compliance, operated exclusively by U.S. citizens on U.S. soil. We support the Joint Warfighting Cloud Capability contract and process sensitive workloads for defense and intelligence operations.²⁴ In January 2025, Amazon announced plans to invest up to \$50 billion to expand AI and supercomputing infrastructure specifically for U.S. government agencies, with nearly 1.3 gigawatts of capacity planned beginning in 2026.²⁵

Amazon's data centers and AI are also central to a modern, cost competitive grid. In California, a groundbreaking AI-powered robot has helped build a new solar project. With computer vision, Maximo the robot reduces solar panel installation time and costs by up to 50%, and it protects workers from extreme heat conditions.²⁶ At the Baldy Mesa solar and battery storage project, machine learning is enabling faster data processing and real-time energy price forecasting, helping stabilize the electrical grid by delivering solar energy when it's needed most—particularly during extreme weather events.²⁷

To build a responsible business for all our customers and the world we share, we are constantly reevaluating how our data centers operate, working to make them more energy and water efficient. Research from Accenture estimates that using AWS's infrastructure is up to 4.1 times more efficient than using on-premises infrastructure.²⁸ We also know that water is a precious resource, which is why Amazon's data centers are committed to being water positive by 2030.²⁹ We are already more than halfway to meeting this goal through conservation projects, water reuse programs, and replenishment initiatives, and we have improved our data center water use efficiency by 40% since 2021.³⁰

Many Factors Are Contributing to Rising Electricity Costs

We share your concern about rising electricity costs for American families. However, the evidence shows that these increases stem primarily from factors unrelated to data centers—and that large energy customers like Amazon are actually helping to hold down rates.

A recent study by Lawrence Berkeley National Laboratory (LBNL) examined the factors driving retail electricity price increases and found that load growth—including from data centers—helped moderate electricity prices over the past five years by spreading fixed infrastructure costs across greater usage.³¹ States with the largest price increases typically featured shrinking customer loads, not growing ones. As one energy expert summarized, "If utilities can bring in a new large customer like a data center... it actually can have downward pressure on rates."³²

While data centers can help hold down electricity costs, LBNL found other factors are the primary drivers of rising electricity costs, including natural disasters that damage critical infrastructure, increases in the costs of

grid equipment, geopolitical events such as the Russia-Ukraine war that have disrupted global energy markets, and the need to upgrade aging transmission and distribution equipment.

Conclusion

Amazon is committed to being a good neighbor in the communities where we operate, paying our full electricity costs, and investing in the grid infrastructure that benefits all customers. Data centers are essential infrastructure for American competitiveness, commerce, and national security. The evidence demonstrates that well-structured data center investments help moderate electricity costs rather than increase them.

We look forward to collaborating with you on policies that accelerate investment in America's electric grid, foster economic development, and deliver affordable, reliable energy for all customers.

Sincerely,

Shannon Kellogg
Vice President, AWS Public Policy Americas

¹ <https://www.aboutamazon.com/news/aws/aws-commitment-to-virginia>

² <https://www.aboutamazon.com/news/aws/amazon-pennsylvania-investment-cloud-infrastructure-ai-innovation>

³ <https://www.aboutamazon.com/news/aws/aws-indiana-investment-11-billion> & <https://www.aboutamazon.com/news/company-news/amazon-15-billion-indiana-data-centers>

⁴ <https://www.aboutamazon.com/news/aws/aws-investment-georgia-ai-cloud-infrastructure>

⁵ <https://www.aboutamazon.com/news/company-news/amazon-3-billion-mississippi-data-center-investment> &

⁶ <https://www.aboutamazon.com/news/aws/aws-investment-north-carolina-ai-cloud-infrastructure>

⁷ <https://governor.ohio.gov/media/news-and-media/governor-dewine-announces-10-billion-investment-plan-from-amazon-web-services-in-greater-ohio>

⁸ <https://www.aboutamazon.com/news/aws/amazon-data-center-investment-community-impact>

⁹ <https://assets.aboutamazon.com/f3/72/dde3b928482ca81451615a0f9541/aws-eastern-oregon-economic-impact-study-factsheet-10182024-final-version-5-1.pdf>

¹⁰ <https://hermistonherald.com/2025/05/30/local-leaders-praise-data-centers-look-to-future/>

¹¹ <https://www.aboutamazon.com/news/aws/amazon-data-center-investment-community-impact>

¹² <https://www.aboutamazon.com/news/aws/aws-training-programs-sustainability-projects-mississippi>

¹³ <https://www.aboutamazon.com/news/aws/amazon-data-center-investment-community-impact>

¹⁴ <https://www.ethree.com/ratepayer-study/>

¹⁵ <https://www.ethree.com/ratepayer-study/>

¹⁶ <https://sepapower.org/large-load-tariffs-database/>

¹⁷ <https://www.nipsco.com/our-company/news-room/news-article/powering-indiana-s-future--how-nipsco--genco--and-amazon-keep-energy-reliable-and-affordable>

¹⁸ <https://www.energy.com/news/energy-mississippi-launches-largest-most-comprehensive-grid-upgrade-in-company-history-superpower-mississippi>

¹⁹ <https://www.aboutamazon.com/news/sustainability/amazon-renewable-energy-goal>

²⁰ <https://www.aboutamazon.com/news/sustainability/amazon-nuclear-small-modular-reactor-net-carbon-zero>

²¹ <https://www.aboutamazon.com/news/aws/aws-project-rainier-ai-trinium-chips-compute-cluster>

²² <https://aws.amazon.com/blogs/publicsector/how-carbynes-cloud-native-platform-helps-911-call-centers-eyes-scene-more/>

²³ <https://aws.amazon.com/blogs/publicsector/10-years-of-government-cloud-innovation-aws-govcloud-us/>

²⁴ <https://aws.amazon.com/blogs/publicsector/aws-selected-for-u-s-department-of-defense-joint-warfighting-cloud-capability-contract/>

²⁵ <https://www.aboutamazon.com/news/company-news/amazon-ai-investment-us-federal-agencies>

²⁶ <https://www.aboutamazon.com/news/sustainability/ai-powered-robot-amazon-solar-farms>

²⁷ <https://www.aboutamazon.com/news/sustainability/carbon-free-energy-projects-ai-tech>

²⁸ <https://sustainability.aboutamazon.com/carbon-reduction-aws.pdf>

²⁹ <https://www.aboutamazon.com/news/aws/aws-water-positive-by-2030>

³⁰ *Id.*

³¹ <https://www.sciencedirect.com/science/article/pii/S1040619025000612>

³² <https://www.pbs.org/newshour/show/how-data-center-power-demand-could-help-lower-electricity-prices>

January 14, 2026

Dear Senators Warren, Van Hollen, and Blumenthal,

Thank you for your letter. We appreciate the opportunity to discuss this important topic. Meta is proud of our work to build and operate some of the most efficient and innovative data centers in the world. Our industry-leading data centers and network are the backbone of our apps, services, and AI, bringing transformative technologies to life.

We currently have 26 US data centers that are operational or under construction across 22 states. We list the locations of these data centers on our website,¹ along with information about the many jobs these data centers support, the partners we work with in each community, the grants we provide and infrastructure we support, and the environmental stewardship we undertake in each data center community.

With this context in mind, please see below for additional information about Meta's data center energy use.

Consumer Utility Costs

We support the long-standing utility regulatory principle that all customers should pay their full cost of electric service. We work closely with electric companies to plan for and meet our energy needs, and we pay the full costs for energy used by our data centers so consumers do not bear these expenses.

The increase in electricity needs from data centers and manufacturers is happening at the same time that the aging electricity grids across America are being updated, replaced, and strengthened. Notably, a recently released US Department of Energy commissioned report concluded that the biggest drivers of electricity rate increases between 2019 to 2024 were distribution grid modernization and aging infrastructure; extreme weather and wildfire recovery costs; volatile natural gas prices; and inflation and supply chain pressures.² This study found that, for the five years analyzed, data center growth was not a driver of retail electricity price increases. On the contrary, states with new large loads like data centers actually saw inflation-adjusted rate decreases. This is not an isolated occurrence—utility companies have found that data center load can create systemwide efficiencies and lower the financial burden on residential and small business customers by spreading fixed costs more broadly. In fact, our utility partner Entergy found that the electricity payments we will make for the Richland Parish

¹ For more information, please see <https://datacenters.atmeta.com/us-locations/>.

² See “Factors Influencing Recent Trends in Retail Electricity Prices in the United States,” https://eta-publications.lbl.gov/sites/default/files/2025-10/full_summary_retail_price_trends_drivers.pdf.

Data Center in Louisiana, our largest multicluster being built, will result in \$650 million in customer savings over 15 years.

A regulatory framework that establishes appropriate guardrails to ensure customers are paying their full cost of electric service—determined by their energy usage profile, rather than their business type—is a long-standing regulatory principle of the electricity system, and one that we fully support. Existing regulations by state commissions and local governing boards aim to ensure fair and equitable allocations of costs and to protect all customers from cost-shifting. We recognize existing approaches may need to be adapted given the growing energy needs from large energy users, like data centers, and support policies that ensure all large energy users pay for any costs they create, so other customers are not impacted. These often come in the form of large load tariffs, which are being created across the country by electric utilities and approved by public utility commissions following transparent regulatory processes.

Data Center Electricity Use

We work with electric utilities and grid operators to plan for and meet our energy needs, including through supporting long-term forecasting and enabling new power generation and transmission infrastructure to be added to grids where we have data centers. This includes their work to strengthen the grid to meet the increasing demand for energy. Through our energy agreements with utilities and independent power producers, Meta pays hundreds of millions of dollars each year to help support new and upgraded grid infrastructure, including power generation, substations and transmission lines.

In addition to these energy agreements, we also help add *new* clean and renewable energy to the grid to support our goal to match our energy usage with clean and renewable energy. We have supported the addition of nearly 28GW of new clean and renewable energy from hundreds of different projects across 27 states (and 29GW globally), making us one of the largest corporate buyers of clean and renewable energy in the world. The projects we support provide energy to grids across the country—paid for by Meta—and represent billions in domestic capital energy investments.

As part of our commitment to support advanced clean and renewable energy technologies, last week, we announced landmark agreements that will extend the operation of three nuclear power plants and boost the development of advanced nuclear technology to strengthen our country's energy infrastructure. Our agreements with Vistra, TerraPower, and Oklo—and the one we signed with Constellation Energy last year³—make Meta one of the most significant corporate purchasers of nuclear energy in America. Supporting nuclear energy development strengthens our country's energy infrastructure and helps create a more reliable electric grid, which are key to powering the economy and securing America's energy independence and global leadership in AI.

³ For more information on the agreement, please see about.fb.com/news/2025/06/meta-constellation-partner-clean-energy-project/.

Finally, we share details regarding our energy usage, water usage, greenhouse gas emissions, and other environmental metrics in our annual sustainability report. The data in the sustainability report is independently verified.⁴

Being a Good Neighbor in Communities Where We Have Data Centers

The construction and operation of our data centers and network infrastructure drives economic and job growth at regional and national levels. Since 2011, tens of thousands of skilled trades people, including steel workers, pipefitters, electricians, and carpenters, have been building and retrofitting our data centers. The three data centers that broke ground in 2025 will support a combined 3,800 construction jobs. Our operational data centers support thousands of operational jobs, including for electricians, HVAC specialists, server and network techs, safety and security experts, and engineers. Our data centers further support billions of dollars in business for American companies, from large employers who domestically manufacture fiber optic cables or fabricate custom steel products for our data centers, to subcontractors who live and work in the states where we are building our centers.

In addition to the jobs and businesses our data centers support, Meta is committed to being a good neighbor in communities where we have data centers. We do this in many ways, including by hiring locally; paying for new and upgraded local infrastructure like new roads, water and wastewater treatment systems; working with power developers to add new clean and renewable energy to the grid; and supporting water conservation projects. We have also provided more than \$58 million across 2,400 grants to local schools and non-profits in our US data center communities to support projects that put technology to use for community benefit, support building sustainable communities, and improve local science, technology, engineering, arts, and math education.

As a part of being a good neighbor to the communities where we have data centers, we have committed millions to electricity bill assistance programs supporting low-income households with their heating and cooling costs. Our commitments include \$15 million to Entergy, our utility partner for our Richland Parish Data Center, to support Entergy's low-income ratepayer assistance program in Louisiana, and the same \$15 million contribution to Alliant Energy, our utility partner in Wisconsin for our Beaver Dam data center, for Alliant Energy's Charitable Assistance Initiative.

Since breaking ground on our first data center, we have focused on sustainability and innovation in our data center design and operations. For example:

- All of our owned data center buildings are certified LEED Gold or higher.
- We helped initiate the Open Compute Project in 2011, which was the first open-source hardware initiative focused on making data centers more efficient, scalable and

⁴ Meta's annual sustainability report is available at sustainability.atmeta.com.

sustainable by promoting the sharing of innovations across the industry. Over the last 15 years, we have shared hundreds of ways to make data centers more energy and water efficient and ways to integrate low-carbon materials in computing technologies.

- We have a goal to match 100% of our electricity use with clean and renewable energy by supporting new clean and renewable energy being added to the grid.
- Our water stewardship program focuses on (i) minimizing data center water use, (ii) supporting water restoration and conservation projects in watersheds where we have data centers, and (iii) being transparent with our water data. Our newest data centers utilize direct-to-chip liquid, closed-loop cooling systems with dry or adiabatic cooling that minimize water use. In addition, the water restoration projects we have supported returned 1.59 billion gallons of water in 2024 alone.
- We work to minimize waste from our data centers, including by integrating circularity into hardware design, operation, and decommissioning and prioritizing recycled materials (post-consumer recycled plastics and metals) in new hardware.
- More than 50% of our operational data center campus footprint is planned, installed or preserved to intentionally support local habitats with native species.
- We work to incorporate more sustainable building materials in our construction, including sustainable steel and lower carbon concrete. This effort is supported by partners like the global energy nonprofit Rocky Mountain Institute (RMI)'s Sustainable Steel Buyers Platform. Additionally, we are piloting engineered mass timber in our data center buildings.

Planned Expansions and Future Data Centers

Given the scale, duration, capital and operational costs of our data center investments, we look at a number of factors to determine locations for our data centers. We look for sites that offer access to a talented operational and construction workforce; excellent access to fiber; a robust and reliable electric grid; a strong business climate; and a great set of community partners who can help us move forward quickly with our project. All of these elements need to come together around one site, which can be years in the making.

When we find a site, we perform all studies and environmental assessments required by local, state and federal laws, and obtain all permits and agreements required to operate our data centers, including air, building, and other siting permits. Utilities also conduct a range of studies to plan for and serve our load.

Everything online has a data center and network infrastructure behind it, which is why data centers are not only critical for AI, but for the entire economy. They are the infrastructure that helps power the 21st century economy, and as businesses, governments and people deploy and utilize online tools, capacity from data centers will need to match that growth. There is also a national economic and security interest in encouraging strong US data center development and not ceding AI and technological leadership to other countries. We hope to see more balanced discussions on data centers and the energy they use, as well as more policies to

strengthen America's grid to advance jobs and economic opportunity—not just for data centers, but for all industries.

Thank you again for the opportunity to address this important topic.

Sincerely,

Brian Rice
VP, Public Policy

January 12, 2026

The Honorable Elizabeth Warren
United States Senate
311 Hart Senate Office Building
Washington, DC 20510

The Honorable Chris Van Hollen
United States Senate
730 Hart Senate Office Building
Washington, DC 20510

The Honorable Richard Blumenthal
United States Senate
503 Hart Senate Office Building
Washington, DC 20510

Dear Senators Warren, Van Hollen and Blumenthal

Microsoft shares the Senators' interest and commitment to ensuring digital infrastructure growth advances without compromising energy affordability or reliability for American families. As a large and long-term electricity customer, Microsoft believes that data center development—and the AI and digital services it enables—must be supported by grid investments and regulatory frameworks that allocate costs fairly, protect residential customers, and strengthen the resilience of the U.S. energy system. We appreciate the Senators' interest and welcome the opportunity to explain Microsoft's approach to datacenter electricity issues and engagement with the electricity utilities that serve our datacenters.

Microsoft's datacenters deliver world-class data security and privacy, enabling the applications, capabilities, and services that support the rapidly evolving digital economy. Microsoft's datacenters operate 24/7 to support our customers, which include critical infrastructure and services—e.g., first responders, hospitals, emergency services, financial institutions, services across the food and agricultural distribution supply chain, and federal, state, and local government operations essential for public health, transportation, and national security. Indeed, the services that Microsoft provides are integral to the U.S. economy. Microsoft's datacenters also make possible everyday activities like paying household bills, remote work, and video calls among family and friends.

Microsoft operates datacenters across North America and five other continents ([map](#)). Microsoft's investments are guided by the needs of its customers. Microsoft's customers can choose the datacenter regions where computing power and services are deployed for them based on qualities like network performance and data residency. Many of Microsoft's customers require that their data be stored in the United States, so it is critical that Microsoft be positioned to expand operations to continuously meet its obligations to its customers. Microsoft has datacenters operating or under development across the U.S., including in Arizona, California, Georgia, Illinois, Iowa, North Carolina,

Texas, Virginia, Washington, Wisconsin, and Wyoming. Our growth is driven by customer demand.

The Senators' are right, AI has increased the energy needs of datacenters in recent years. AI workloads – whether for training or inferencing – depend on specialized semiconductors called GPUs. As GPUs advance their capabilities with each new generation, their demand for power increases. Over the past five years, per-GPU power has increased roughly 3.5 times. Yet to stay competitive, protect our security, and maintain United States leadership in AI, it is critical that the most advanced GPUs (i.e. NVIDIA GB300s) are made available for use in datacenters around the country to customers, such as US software developers, scientific researchers, advanced manufacturers, businesses, government science and defense agencies, and others. To minimize the impact of growing GPU power demands, we innovate and work continuously in the design and management of our datacenters and computing services.

We also work with utilities, transparently sharing our projected power needs and contracting in advance for the infrastructure and electricity we will need. We publicly report Microsoft's companywide electricity usage by region in our annual sustainability report which can be found [here](#). More detailed site specific energy usage or facility level projections can raise concerns due to contractual confidentiality, customer security requirements, trade secret protections and affect our obligations to customers, including federal agencies and national security customers.

Microsoft pays for the electricity that we consume and for the infrastructure costs to generate and deliver that electricity to our sites. We work with utilities, who set prices, and utility commissions, who approve them, to make sure that these costs are calculated and assigned accurately and transparently and not shifted to residential customers.

Utilities and utility commissions across the country have been and are taking different approaches to address this problem. Microsoft supports rate classes based on patterns of energy use—such as Wisconsin's Very Large Customer class—that ensure large loads like datacenters pay for new infrastructure built to serve them and prevent cost shifting to residential customers.

It's critical to foster dialogue among regulators, grid operators, utilities, transmission providers, and other stakeholders with the objective of ensuring that U.S. electricity infrastructure is reliable, resilient, and affordable to all. This starts with providing utilities with insights into forecasted needs. It includes leveraging tools, including AI, to improve energy systems.

Microsoft datacenters support every part of the US economy. In addition, we are investing in bringing additional energy to the grid. Our carbon-free electricity program has grown eighteenfold since 2020, with contracted renewables increasing from 1.8 GW to over 34 GW across 24 countries. In the US, for example, we have a power purchase agreement with Constellation to bring the Crane Clean Energy Center back online to provide 835MW of carbon-free energy to the PJM Interconnection and a power purchase agreement with

Geronimo Power in Wisconsin to bring 250 MW of renewables online, including a community benefit fund for environmental resilience initiatives. Further, through the \$1 billion Climate Innovation Fund, Microsoft is providing innovative financing to companies such as LineVision, AutoGrid, and Utilidata. Microsoft expects its investments will contribute to the development of a stronger and more robust electric grid.

The rapid growth of AI and its supporting infrastructure has created an unprecedented opportunity to foster problem solving and shared responsibility in growing datacenter markets while driving meaningful community impact and supporting local prosperity and well-being.

Construction of our datacenters creates thousands of jobs for those in the building trades, including electricians, iron-workers, pipe-fitters, construction workers, and more. Once operational, our datacenters employ hundreds of technicians, mechanical and electrical engineers, and other professionals. We partner with local community colleges and vocational schools across the country to offer our Datacenter Academy which trains people for these careers, opening up new pathways into the technology industry.

In addition, our datacenters generate public infrastructure improvements and substantial local property tax revenue that serve as a catalyst for enhancing the quality of life in communities. That translates into new and improved social services, such as better-equipped schools that empower children's education and well-maintained roads and digital infrastructure that connect us all. We also partner with local governments, businesses, schools and nonprofits to provide essential digital skills training and STEM education for adults and children. We invest in initiatives to enhance local sustainability. We restore sensitive watershed corridors and invest in projects to conserve trees, enhance native flora and protect ecological habitats, providing benefits to the surrounding ecosystems and honoring the natural beauty of the area.

We welcome continued dialogue and engagement on these important issues.

Sincerely,

A handwritten signature in black ink, appearing to read "Frederick S. Humphries, Jr." The signature is fluid and cursive, with "Frederick" and "S." being more stylized, and "Humphries" and "Jr." being more clearly legible.

Frederick S. Humphries, Jr.
Corporate Vice President
U.S. Government Affairs
Microsoft Corporation

January 12, 2026

The Honorable Elizabeth Warren
United States Senate
311 Hart Senate Office Building
Washington, D.C. 20510

The Honorable Richard Blumenthal
United States Senate
503 Hart Senate Office Building
Washington, D.C. 20510

The Honorable Chris Van Hollen
United States Senate
730 Hart Senate Office Building
Washington, D.C. 20510

Dear Senators Warren, Blumenthal and Van Hollen,

Thank you for the opportunity to respond to the letter we received on December 15, 2025 regarding data centers and their critical role in enabling the American economy. Between 2017 and 2023, the data center industry's total contribution to U.S. gross domestic product was \$3.5 trillion. In 2023, the U.S. data center industry directly employed more than 600,000 workers and supported 4.7 million jobs in total. The same year, the sector generated \$404 billion in total labor income and contributed \$162.7 billion in U.S. federal, state, and local taxes.¹

Digital Realty Trust, Inc. is a publicly traded (NYSE: DLR) company formed in 2004 and headquartered in Austin, Texas. We own and operate over 300 data centers in more than 50 cities globally, serving over 5,000 customers who deploy their information technology (IT) equipment and computers at these locations. Our customers represent virtually every sector of the economy – financial services, defense, entertainment, utilities, transportation, universities, consumer goods, technology, telecommunications, healthcare, real estate, energy, agriculture, and federal, state and local governments, among many others. Our customers partner with Digital Realty to meet their digital infrastructure needs relying on our global connectivity, proprietary expertise, supply chain management and ability to procure power at regional and local levels.

In the U.S., Digital Realty has more than 100 data centers that support the requirements of our customers.² Digital Realty offers a data center platform that our customers can utilize to customize our facilities for their IT equipment deployments of any size and scale.

Our data centers provide secure, highly connected and continuously available environments for the exchange, processing and storage of data and serve as hubs for internet and data communications between major metropolitan areas. Customers use our data centers for digital communication, disaster recovery purposes, transaction processing and housing corporate IT applications.

¹ PwC, "Economic Contributions of Data Centers in the United States," available at <https://www.centerofyourdigitalworld.org/2025-impact-study>, accessed on January 2, 2026.

² Digital Realty locations, available at <https://www.digitalrealty.com/data-centers/americas>, accessed January 2, 2026.

Globally, Digital Realty has nearly three gigawatts (GW) of in-place IT capacity.³ Data center customers have different needs and our customers' data center energy usage varies based on their needs at any given time. For example, a major metropolitan hospital typically has larger energy demands for our data centers than a smaller community urgent care clinic. These market dynamics impact overall energy usage at our data centers at any given time.

For the first time in a generation, the U.S. is facing increased electricity demand due to a variety of factors, including investment in advanced manufacturing, electrification of buildings, widespread adoption of electric vehicles (EV), adoption of cloud computing and use of artificial intelligence (AI), among many others. Not long ago, few were predicting increases in energy usage in the U.S. Today, it is increasingly difficult to predict what will happen in the years ahead as Americans adapt to new and emerging technologies, including AI.

With an average of 21 connected devices per household in the U.S., the role of data centers is expected to grow as consumers and businesses generate twice as much data in the next five years as they did in the past decade.⁴ Like all utility customers, we rely on utilities to deliver electricity and we require reliable service for our operations. Data center investment provides capital for those utilities to upgrade their infrastructure to deliver these services, much of which hasn't been upgraded in decades.

As we plan, we work closely with our utility partners and regulated independent system operators to help manage our energy usage. We also engage with our existing and potential customers to understand their future IT needs and make informed capital decisions that will benefit all our stakeholders.

The market drives long-term projections and is evolving constantly. Most utility contracts have a minimum and maximum ramp window over many years based on a variety of factors, including electricity availability. When we obtain an available ramp from a utility, we analyze customer demand with available electricity supply. Historically, electricity was widely available because electricity demand had been flat for roughly 25 years. Today, with the growth of AI and other technologies, we constantly evaluate evolving market dynamics which impact data center investments and construction.

Our customers perform trillions of IT functions with their IT hardware inside our data centers – from simple everyday mobile device usage through cloud computing to complex AI processing that is now embedded in virtually every sector of the economy. For example, using an app to order groceries for delivery and swiping a credit card to pay for a cup of coffee are facilitated by a data center. If a regional hospital system is using an AI application to monitor patient heart rhythms or to fill worker shortages and limit clinician burnout, that is happening on IT hardware, which typically is physically located inside a facility like a data center. Similarly, if firefighters are using predictive AI models to determine where a forest fire may break out, that, too, could be happening inside a data center. Energy consumption for these and other technologies takes many forms and is priced on a variety of factors, including availability, geography, utility services, weather risk, insurance, customer needs and innovation.⁵

³ Digital Realty Investor Presentation, September 2025, page 5, available at <https://investor.digitalrealty.com/static-files/36e0f946-fd91-48b6-9ce2-86463d92496b>, accessed January 2, 2026.

⁴ Deloitte, "Connected Consumer Study 2023," September 2023, available at <https://www.deloitte.com/us/en/insights/industry/telecommunications/connectivity-mobile-trends-survey/2023/connectivity-mobile-trends-survey-full-report.html>, accessed on January 2, 2026; International Telecommunication Union, "Internet use continues to grow, but universality remains elusive, especially in low-income regions," November 27, 2024; JLL, "Data Centers 2024 Global Outlook," January 31, 2024.

⁵ "Hospitals Are a Proving Ground for What AI Can Do, and What It Can't," *The Wall Street Journal*, January 5, 2026, available at <https://www.wsj.com/tech/ai/hospitals-are-a-proving-ground-for-what-ai-can-do-and-what-it-can't-60e4020c?mod=Searchresults&pos=1&page=1>, accessed on January 7, 2026.

A strong, reliable and resilient electricity grid is a shared interest of all stakeholders. Data centers typically are subject to industrial high-load factor energy tariffs that are designed for large energy users, including manufacturers, refineries, industrial applications, and other large power users.⁶ Utilities require minimum demand charges, long-term contracts and upfront financial commitments to ensure data centers fund these infrastructure investments.

Your letter also asks about the availability of onsite power, such as generators. Our data centers are designed to operate independently from the power grid in the event of a grid outage or emergency, thereby reducing the strain on the power grid during an outage. Our data centers have backup generators onsite in the event the utility is unable to provide power. Fundamentally, a core premise of the data center business model is its ability to provide more power certainty than the grid. Backup generators protect our ability to serve customers and provide critical IT services, including in the event of a power outage.

We participate in demand response programs using our data centers to strengthen the power grid when the grid is under stress. However, load flexibility programs are not commercially available or viable in some utility territories. Where load flexibility programs are available, the rules for participating vary widely by utility and region, and the rules often are not geared toward demand response from data centers. Utilities, grid operators, and regulators are the best resources for projections on utility costs, considering many factors impacting load growth and cost beyond just our data centers. We do not attempt to replicate their essential role.

Proximity to customers, telecommunications network infrastructure, availability of power and land, cost, community receptiveness, human capital, real estate zoning, and security are just a few of the factors we consider when selecting a location for a data center. To support the connectivity requirements of modern digital infrastructure, our highly connected data centers are typically situated in close proximity to population centers.

When we consider locations for investment, we engage community stakeholders to ensure our investments benefit local communities. Digital Realty's goal is to be a productive, contributing member of the communities we operate in globally. When we commence construction on a data center, there is an increase in demand for high-paying construction jobs – for example, general contractors, electricians, laborers, project managers, engineers, architects, truck drivers, pipefitters and ironworkers.⁷

In Virginia, for example, we work with a variety of community organizations, including the Ashburn Volunteer Fire and Rescue Department where we recently helped raise money to support department operations.⁸ We also partner with the Northern Virginia Community College (NVCC) Data Center Operations program to sponsor paid internship programs that lead to full-time employment. In Texas, we have strong partnerships with our local school districts in Dallas and Richardson. We have hosted events for high school students interested in IT programs, résumé workshops, mentoring sessions and career days. We have also provided internship opportunities, including through the Richardson Mayor Internship Program. We have supported Dallas-Fort Worth (DFW) Canines for Veterans, a Texas-based non-profit that matches disabled combat veterans suffering from PTSD with trained service dogs sourced from city kill shelters.

⁶ Utilities regularly publish approved tariffs for large load customers.

⁷ "Data Centers Are a 'Gold Rush' for Construction Works," *The Wall Street Journal*, November 29, 2025, available at https://www.wsj.com/business/data-centers-are-a-gold-rush-for-construction-workers-6e3c5ce0?gaa_at=eafs&gaa_n=AWEtsqcAdisUdOIMI4hYYtWlW2yJscCJQq5jwxgsemrNwcTliuqBL6igb167t_GkJU%3D&gaa_ts=6956b962&gaa_sig=FBhfO5S8x1Mli89uMsA7JAZIXjuXonm6m901MPbxFkUlkAQXgugwUNUyLr5-ronis1qJ0CpHERn_AcNf4czxw%3D%3D, accessed on January 2, 2026.

⁸ "Ashburn Volunteer Fire Department Receives \$90K donation from Digital Realty," *Loudoun Times-Mirror*, available at https://www.loudountimes.com/0local-or-not/1local/ashburn-volunteer-fire-department-receives-90k-donation-from-digital-realty/article_e2fc0800-6fad-11ef-a427-53c18277f966.html, accessed on January 2, 2026.

Many states across the country provide incentive programs to attract data center investment and development. The structures of these programs vary and may include real estate tax exemptions and customers' sales tax exemptions on purchases of qualified equipment. Some states provide incentives tied to the hiring of employees. Where appropriate, we engage with state and local governments to determine if mutually beneficial economic development packages align with shared goals of economic growth.

We believe in transparency in our political and policy activities and file disclosure reports when necessary. We also belong to various trade associations engaged in government advocacy activity.⁹ We are eager to work alongside all stakeholders to ensure sound public policy and regulatory outcomes.

We appreciate your interest in the vital role of Digital Realty's data centers in supporting the U.S. economy and we look forward to working with you in the future as you seek to learn more about our industry. Please contact us with any questions.

Sincerely,

A handwritten signature in black ink.

Kevin P. Gundersen
Head of Public Affairs

⁹ Digital Realty 2025 Proxy Statement, available at <https://investor.digitalrealty.com/static-files/0d4320b6-15ae-44c6-90db-c5785c94450b>, accessed on January 7, 2025.